39 research outputs found

    Optimal Control of Superconducting N-level quantum systems

    Full text link
    We consider a current-biased dc SQUID in the presence of an applied time-dependent bias current or magnetic flux. The phase dynamics of such a Josephson device is equivalent to that of a quantum particle trapped in a 1−1-D anharmonic potential, subject to external time-dependent control fields, {\it i.e.} a driven multilevel quantum system. The problem of finding the required time-dependent control field that will steer the system from a given initial state to a desired final state at a specified final time is formulated in the framework of optimal control theory. Using the spectral filter technique, we show that the selected optimal field which induces a coherent population transfer between quantum states is represented by a carrier signal having a constant frequency but which is time-varied both in amplitude and phase. The sensitivity of the optimal solution to parameter perturbations is also addressed

    Fidelity of optimally controlled quantum gates with randomly coupled multiparticle environments

    Full text link
    This work studies the feasibility of optimal control of high-fidelity quantum gates in a model of interacting two-level particles. One particle (the qubit) serves as the quantum information processor, whose evolution is controlled by a time-dependent external field. The other particles are not directly controlled and serve as an effective environment, coupling to which is the source of decoherence. The control objective is to generate target one-qubit gates in the presence of strong environmentally-induced decoherence and under physically motivated restrictions on the control field. It is found that interactions among the environmental particles have a negligible effect on the gate fidelity and require no additional adjustment of the control field. Another interesting result is that optimally controlled quantum gates are remarkably robust to random variations in qubit-environment and inter-environment coupling strengths. These findings demonstrate the utility of optimal control for management of quantum-information systems in a very precise and specific manner, especially when the dynamics complexity is exacerbated by inherently uncertain environmental coupling.Comment: tMOP LaTeX, 9 pages, 3 figures; Special issue of the Journal of Modern Optics: 37th Winter Colloquium on the Physics of Quantum Electronics, 2-6 January 200

    Optimal switching of a nanomagnet assisted by microwaves

    Full text link
    We develop an efficient and general method for optimizing the microwave field that achieves magnetization switching with a smaller static field. This method is based on optimal control and renders an exact solution for the 3D microwave field that triggers the switching of a nanomagnet with a given anisotropy and in an oblique static field. Applying this technique to the particular case of uniaxial anisotropy, we show that the optimal microwave field, that achieves switching with minimal absorbed energy, is modulated both in frequency and in magnitude. Its role is to drive the magnetization from the metastable equilibrium position towards the saddle point and then damping induces the relaxation to the stable equilibrium position. For the pumping to be efficient, the microwave field frequency must match at the early stage of the switching process the proper precession frequency of the magnetization, which depends on the magnitude and direction of the static field. We investigate the effect of the static field (in amplitude and direction) and of damping on the characteristics of the microwave field. We have computed the switching curves in the presence of the optimal microwave field. The results are in qualitative agreement with micro-SQUID experiments on isolated nanoclusters. The strong dependence of the microwave field and that of the switching curve on the damping parameter may be useful in probing damping in various nanoclusters.Comment: 9 pages, 8 figure

    Optimal generation of Fock states in a weakly nonlinear oscillator

    Full text link
    We apply optimal control theory to determine the shortest time in which an energy eigenstate of a weakly anharmonic oscillator can be created under the practical constraint of linear driving. We show that the optimal pulses are beatings of mostly the transition frequencies for the transitions up to the desired state and the next leakage level. The time of a shortest possible pulse for a given nonlinearity scale with the nonlinearity parameter delta as a power law of alpha with alpha=-0.73 +/-0.029. This is a qualitative improvement relative to the value alpha=1 suggested by a simple Landau-Zener argument.Comment: 10 pages, 6 figure

    Universality of Level Spacing Distributions in Classical Chaos

    Full text link
    We suggest that random matrix theory applied to a classical action matrix can be used in classical physics to distinguish chaotic from non-chaotic behavior. We consider the 2-D stadium billiard system as well as the 2-D anharmonic and harmonic oscillator. By unfolding of the spectrum of such matrix we compute the level spacing distribution, the spectral auto-correlation and spectral rigidity. We observe Poissonian behavior in the integrable case and Wignerian behavior in the chaotic case. We present numerical evidence that the action matrix of the stadium billiard displays GOE behavior and give an explanation for it. The findings present evidence for universality of level fluctuations - known from quantum chaos - also to hold in classical physics

    Closed Path Integrals and Renormalisation in Quantum Mechanics

    Full text link
    We suggest a closed form expression for the path integral of quantum transition amplitudes. We introduce a quantum action with renormalized parameters. We present numerical results for the V∼x4V \sim x^{4} potential. The renormalized action is relevant for quantum chaos and quantum instantons.Comment: Revised text, 1 figure added; Text (LaTeX file), 1 Figure (ps file

    Hamiltonian lattice QCD at finite chemical potential

    Full text link
    At sufficiently high temperature and density, quantum chromodynamics (QCD) is expected to undergo a phase transition from the confined phase to the quark-gluon plasma phase. In the Lagrangian lattice formulation the Monte Carlo method works well for QCD at finite temperature, however, it breaks down at finite chemical potential. We develop a Hamiltonian approach to lattice QCD at finite chemical potential and solve it in the case of free quarks and in the strong coupling limit. At zero temperature, we calculate the vacuum energy, chiral condensate, quark number density and its susceptibility, as well as mass of the pseudoscalar, vector mesons and nucleon. We find that the chiral phase transition is of first order, and the critical chemical potential is μC=mdyn(0)\mu_C =m_{dyn}^{(0)} (dynamical quark mass at μ=0\mu=0). This is consistent with μC≈MN(0)/3\mu_C \approx M_N^{(0)}/3 (where MN(0)M_N^{(0)} is the nucleon mass at μ=0\mu=0).Comment: Final version appeared in Phys. Rev.

    Essential spectra of difference operators on \sZ^n-periodic graphs

    Full text link
    Let (\cX, \rho) be a discrete metric space. We suppose that the group \sZ^n acts freely on XX and that the number of orbits of XX with respect to this action is finite. Then we call XX a \sZ^n-periodic discrete metric space. We examine the Fredholm property and essential spectra of band-dominated operators on lp(X)l^p(X) where XX is a \sZ^n-periodic discrete metric space. Our approach is based on the theory of band-dominated operators on \sZ^n and their limit operators. In case XX is the set of vertices of a combinatorial graph, the graph structure defines a Schr\"{o}dinger operator on lp(X)l^p(X) in a natural way. We illustrate our approach by determining the essential spectra of Schr\"{o}dinger operators with slowly oscillating potential both on zig-zag and on hexagonal graphs, the latter being related to nano-structures

    Crossed Andreev reflection at ferromagnetic domain walls

    Full text link
    We investigate several factors controlling the physics of hybrid structures involving ferromagnetic domain walls (DWs) and superconducting (S) metals. We discuss the role of non collinear magnetizations in S/DW junctions in a spin ⊗\otimes Nambu ⊗\otimes Keldysh formalism. We discuss transport in S/DW/N and S/DW/S junctions in the presence of inelastic scattering in the domain wall. In this case transport properties are similar for the S/DW/S and S/DW/N junctions and are controlled by sequential tunneling of spatially separated Cooper pairs across the domain wall. In the absence of inelastic scattering we find that a Josephson current circulates only if the size of the ferromagnetic region is smaller than the elastic mean free path meaning that the Josephson effect associated to crossed Andreev reflection cannot be observed under usual experimental conditions. Nevertheless a finite dc current can circulate across the S/DW/S junction due to crossed Andreev reflection associated to sequential tunneling.Comment: 18 pages, 8 figures, references added at the end of the introductio
    corecore